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Scattering of Sound by a Classical Vortex* 

ALEXANDER L. FETTER! 

Department of Physics, University of California, Berkeley, California 
(Received 20 July 1964) 

The cross section for the scattering of sound by a vortex is calculated using the linearized equations of 
classical hydrodynamics. With a circulation K, the differential cross section in the long-wavelength limit is 
J7T(K/27TC)2^ sinV(l — co$<p)~2, where c is the speed of sound. Possible experimental verification is suggested, 
with particular reference to liquid He II. 

I. INTRODUCTION 

EXPERIMENTAL and theoretical studies have 
shown that rotating liquid He I I forms an array of 

rectilinear vortices.1-4 In particular, Hall and Vinen4 

found that second sound in rotating He I I is strongly 
damped perpendicular to the axis of rotation. They 
interpret this as a mutual friction force between the 
normal fluid and the vortices in the superfluid, propor­
tional to the relative velocity of the two fluids. At low 
temperatures (<0.5°K), the normal fluid is composed 
predominantly of phonons,5 and the theoretical calcu­
lation of the frictional force in that temperature range 
involves the classical problem of scattering of sound by 
a vortex.6 

Nearly a century ago, Kelvin7 studied the normal 
oscillation modes of a vortex in an incompressible fluid. 
The presence of a sound wave, which requires a finite 
compressibility, greatly complicates the hydrodynamic 
equations. In the specific case of scattering of sound by 
a vortex, it is only possible to find an analytic solution 
in the long-wavelength limit. All the phase shifts in this 
limit are independent of the core structure of the vortex. 
The proof of this statement for s waves requires a 
special treatment, and two standard models are con­
sidered, which lead to simple results: (1) a hollow core 
and (2) a core with uniform vorticity (one that executes 
solid body rotation. Pitaevskii6 has previously calcu­
lated the cross section for scattering of sound by a 
vortex, using the Born approximation. For this reason, 
his results differ from those reported here, which are 
exact in the long-wavelength limit. 
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II. LINEARIZED ACOUSTICAL EQUATIONS 

We start with the equations of classical hydro­
dynamics8 : 

dp/dt+V-(pv) = 0, (1) 

dv/dt+ (v V)v+ (l/p)Vp=0, (2) 

where p is the density of the fluid, v is the velocity field, 
and p is the pressure. These equations must first of all 
be rewritten in cylindrical coordinates, (r,<p,z). If 
(u,v,w) represent the radial, tangential, and axial com­
ponents of the velocity, Eqs. (1) and (2) become 

dp l d id d 
— + (rup)+ (vp)+~(wp) = 0 , (3) 
dt r dr r dip dz 

du du v du du v2 1 dp 
\-u 1 \-w 1 = 0 , (4) 

dt dr r dcp dz r p dr 

dv dv v dv dv uv 1 dp 
—+«—+ +W-+-+ = 0, (5) 
dt dr r d<p dz r pr d<p 

dw dw v dw dw 1 dp 
\-u 1 h w 1 = 0 . (6) 

dt dr r dp dz p dz 

There is a time-independent solution of the form 
u=w = 0j v=v(r), p=D(r), p=P(r). In this case, Eqs. 
(3)-(6) reduce to the single condition that 

DV2/r=dP/dr, (7) 

which is merely Bernoulli's theorem. For a vortex with 
circulation K, the tangential velocity is 

V(r) = ic/2*r. (8) 

We now consider a sound wave superimposed on the 
steady solution. The components of the velocity, the 
density, and the pressure become u, V+v, w; D+p; 
P+p, where u,v,w;p;p are the oscillating components. 
In the approximation of linear acoustics,9 terms quad­
ratic in the sound field are neglected. The resulting 

8 H . Lamb, Hydrodynamics (Dover Publications, New York, 
1945), 6th ed., Chap. 1, pp. 4, 6. 

9 P. M. Morse and K. U. Ingard, Handbuch der Physik, edited 
by S. Fliigge (Springer-Verlag, Berlin, 1961), Vol. XI /1 . p. 5. 
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equations are 

dp 1 d Id d 
1 (ruD)-\ -(Vp+vD)-\—(wD) = 0, 

dt r dr r dip dz 
du V du 2Vv 1 dp p V2 

dt r dip r D dr D r 

dv dV V dv uV 1 dp 

-+u—+ +—+ = 0, 
dt dr r dip r Dr dip 

dw V dw 1 dp 
—+ + -0 , 
dt r dip D dz 

where 

(9) 

(10) 

(11) 

(12) 

which are not restricted to the velocity field for a vortex. 
At sound frequencies, small changes in the pressure and 
density are related by 

p=c2p, (13) 

where c is the speed of sound. Although c is not strictly 
independent of position, it is taken to be constant in 
this calculation. I t can be shown (at least for a vortex 
in an ideal gas) that this assumption introduces no 
error in lowest order. 

Using (9)-(12) it is a simple matter to verify that a 
sound wave may propagate unchanged along the axis 
of the vortex. There is no scattering in this case, and we 
shall therefore specialize to motion in the plane per­
pendicular to the axis of the vortex (w = Q). Harmonic 
time dependence (eriut) is appropriate for a sound wave, 
and it is also useful to expand in a Fourier series: 

p(r,<p) = — E e^piir), 
2w ^=—OO 

(14) 

with similar expansions for u and v. By the use of (13) 
and (14), the equations of linear acoustics may be 
simplified to the following set: 

( • 

f W\ 1 d UD 
—ico+i— JpH (ufrD)-\ vi= 0, 

^ r / r dr r 

W\ IVvi c2 dpi V2 

-ua+i— W 1 P^=0, 
r / r D dr rD 

( W\ fdV V\ icH 
I —io)+i— Wi+uA 1— H pi=0 
\ r I \dr r / Dr 

(15) 

(16) 

(17) 

The last equation is an algebraic one, and it may be 
used to eliminate vi from the other two equations. The 
result is a pair of coupled, linear, first-order differential 
equations for u$ and p^. A good bit of manipulation 
yields the following pair: 

d2pi 1 dpi /co2 

—+ + ( — 
dr2 r dr \c2 

i2\ 
— JPt 
r2/ 

dpi 
-si—+tm=Q, (18) 

dr 

dpi 
M=H Vhpi, 

dr 
(19) 

U=-
2Ww a 

F d 
st= 1—\nAi, 

re2 dr 

2V/V dV\ bt d 

(20) 

rc*\r 

I W\-*/V 1 

+2V—) (~-
\ r J \r r 

= d co j — 
\ r J r2 dr 

ai=c2{DAi)-l{o*-lV/r), 

dr J ai dr 

1 dV Vs 

2 dr re • ) . 

M (rV), 

h= - {r2DAt)-1[V*r(u-lV/r)+2Vtci1. 

(21) 

(22) 

(23) 

(24) 

For the vortical velocity field (8), s and / vanish for 
large r, and the solutions of (18) behave asymptotically 
like a linear combination of BesseL functions. I t is 
convenient to introduce the concept of phase shifts, 
exactly as in three-dimensional scattering. Since the 
formulas are slightly different in two dimensions, the 
relevant results are derived in the next section. 

III. PHASE SHIFTS AND SCATTERING IN 
TWO DIMENSIONS 

The problem of interest is the scattering of an incident 
plane wave; far from the vortex (r—» oo) we assume 
that 

p(r,<p)->e*"+ (i7rkyi2f(ip)H0V ikr) 

- ei^+r~1'2f(ip)expli(kr~iT)'], (25) 

where # 0
( 1 ) is the Hankel function10 appropriate for 

outgoing waves. The procedure is exactly as in the 
three-dimensional scattering problem.11 The solution of 
(18) that satisfies the inner boundary condition must 
behave for large r like 

Pl(r)->(2/Trkryt2
 C o s [ > - f ( m V + V ] . (26) 

A comparison of (25) and (26) yields the following 
relation between the scattering amplitude f(<p) and the 
phase shifts: 

/(*.) = ( 2 ^ ) - 1 / 2 Z £ e x p ( 2 ^ ) - l>tf*. (27) 

Hence, the scattered density for large r is of the form 

p S c ( r ^ ) - > r - 1 / 2 / ( ^ ) e x p p ( ^ - i 7 r ) ] . (28) 

Equation (19) gives the radial component of velocity 
in terms of pi, and, for r —-> oo, we have 

Duui= —ic2(dpi/dr). (29) 
10 G. N. Watson, A Treatise on the Theory of Bessel Functions 

(Cambridge University Press, New York, 1962), 2nd ed., pp. 73, 

11L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com­
pany, Inc., New York, 1955), 2nd ed., p. 103. 
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In this limit, the summation over I is trivial, and the 
result is 

^ ^ ( ^ ^ - ^ ( ^ - V ^ - ^ V C ^ e x p p ^ - i T r ) ] . (30) 

The cross section is defined in terms of the energy 
flux through a cylinder at infinity. The problem of 
acoustic energy flux in a moving medium is a little 
tricky,12'13 and the discussion is simplified by noting that 
at large distances, any small element of a cylinder is 
essentially a plane. In this limit we may use a result 
derived by Ribner13 for the energy flux / perpendicular 
to a uniform velocity field: 

/ = (pu)^+DV(uv)av, (31) 

where (• • • )av means the average over one cycle. The 
second term describes the effect of the steady velocity 
field. All the oscillating quantities behave like r~1/2 for 
large r, and the second term of (31) is therefore of order 
r~l with respect to the first. The net result is just what 
one would write down for a stationary medium. 

The outward energy flow per unit time into an 
angular element dip of a cylinder of unit length is 

(pu)avrd<p=^Re(pscusc*)rd<p. (32) 

With the use of (13), (28), and (30), Eq. (32) becomes 

±(Du)-lc%f(ip)\2dip. (33) 

For the incident plane wave, 

and the incident flux is 

§(Z>co)-V&. 

The cross section, which is defined as the energy scat­
tered per unit time per unit incident energy flux into a 
unit angular interval, is given by 

<r(<p)=\f(<p)\2. (34) 

The total cross section is 

<r= / cr(cp)dcp=4:k-1j:^in%. (35) 
Jo 

Notice that (in two dimensions) these have the dimen­
sion of a length, not an area. 

IV. THE S-WAVE PHASE SHIFT 

In a general two-dimensional scattering problem, the 
s-wave phase shift behaves like (ln&)-1 for small k. 
This is easily seen by the following argument14: We 
consider scattering by a perturbation U(r), where U is 

12 P. M. Morse and K. U. Ingard, Handbuch der Physik, edited 
by S. Fliigge (Springer-Verlag, Berlin, 1961), Vol. XI /1 , p. 9. 

13 H. S. Ribner, J. Acoust. Soc. Am. 29, 435 (1957). 
14 L. D. Landau and E. M. Lifshitz, Quantum Mechanics 

(Addison-Wesley Publishing Company, Inc., Reading, Massa­
chusetts, 1958), p. 403. 

negligible for r>r0. Then the wave equation for any 
physical quantity x is 

x , /W+^YW+[A2-?7W]xW = 0. (36) 

In the region r^kr1, the term in k2 is unimportant and 
the equation becomes 

x,,W+r-Y(f)-J7(r)x(f) = 0. (37) 
For sufficiently large r, U may also be neglected, so that 
the solution for r^r<^k~x is 

x W = c i+c 2 ln r . (38) 

On the other hand, U is negligible for r^r, in which 
case Eq. (36) reduces to 

X r / W + r Y W + f t W = 0; (39) 

the general solution of (39) is 

x(r) = AJ0(kr)+BYo(kr). (40) 

Equations (38) and (40) are both valid for r0<<Cr, so that 
the constants A and B are determined: 

A = c1-c2(y+ln^k), 

B = ±TC2, (41) 

where y is Euler's constant, 0.577. When kr^>>ly the 
asymptotic behavior of the Bessel functions can be 
used,15 and comparison of (40) with (26) yields 

\ir c o t § 0 = l n J ^ + 7 - (a/c2). (42) 

Thus for small k, the s-wave phase shift behaves like 
(ln^)-1. 

The cross section calculated from (42) diverges like 
^_ 1(ln^) - 2 for long wavelengths. Such behavior occurs 
in many physical situations. The quantum-mechanical 
scattering by a hard cylinder16 and the transmission of 
sound through an aperture in a screen bounded by 
parallel straight edges17 are typical examples. There is, 
however, one well-known exception: The cross section 
for scattering of sound by a rigid cylinder is proportional 
to k? for small k.18 This difference is due to the inner 
boundary conditions on %.16 In the quantum-mechanical 
scattering problem, x is required to vanish at the surface 
of the cylinder, while in the acoustic problem, the 
gradient of x vanishes. A detailed analysis shows that 
for the latter case, the "constant" c2 in (38) is in fact a 
small quantity of order k2. The s-wave phase shift in 
(42) is then also proportional to k2, which explains the 
apparent contradiction between the general form of the 

15 G. N. Watson, A Treatise on the Theory of Bessel Functions 
(Cambridge University Press, New York, 1962), 2nd ed., p. 199. 

16 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), Part II, 
p. 1382. 

17 H. Lamb, Hydrodynamics (Dover Publications, New York, 
1945), 6th ed., p. 533. See also J. W. Strutt, Baron Rayleigh, 
Scientific Papers (Cambridge University Press, New York, 1903), 
Vol. IV, p. 283. 

18 J. W. Strutt, Baron Rayleigh, The Theory of Sound (Mac-
Millan and Company, Ltd., London, 1929), Vol. II, p. 309. 
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cross section and Rayleigh's result for the acoustic 
problem.18 

A similar situation occurs when sound is scattered by 
a vortex. If I is zero, Eq. (18) simplifies considerably, 
and, with the vortical velocity field (8), we find 

po"(x)+x-*(x2-l)po'(x)+(v2+2x-*)PQ(x) = 0, (43) 

where x=2wcr/K and v = Kk/2irc<^l. For the region 
x2<Kv~l, Eq. (43) reduces to 

po"(x)+x-*(x*-l)po'(x) + 2x~*po(x) = 0. (44) 

This may be solved with the substitution 

po(%) = yo(x)exp(—%x~2), (45) 

which leads to 

^ ( x ) + x - 3 ( x 2 + l ) V W = 0. (46) 

The general solution of (46) is 

y0 (x) = A +B / dxx-1 exp (^x~2), (47) 

where A and B are constants. A simple change of 
variable yields 

Po(x) = A exp ( - |<* r 2 )+£ e x p ( - | x - 2 ) E i ( | x - 2 ) . (48) 

The exponential integral in (48) is defined by 

Ei(x)= f dtrh*, (49) 
J —oo 

which is interpreted as a principal value for x>0.19 

The ratio of the constants in (48) is determined by 
the boundary conditions. The two chosen models of the 
vortex core lead to especially simple expressions, and, 
in fact, give the same behavior in the long-wavelength 
limit. If the vortex has a hollow core of radius a, then 
the oscillating component of the pressure must vanish 
at the inner edge of the vortex. We consider a particle 
whose radial position in the absence of a sound wave is 
fo.7 Its position in the presence of the sound wave is 
given by 

r=rQ+ / dtue-icat = r^iuorle~i<at. (50) 

The corresponding change in the pressure is obtained 
from (7) and is 

AP = ro~1DV2(r-r0). (51) 

The oscillating component of the pressure must vanish 
at r=a, and it follows that 

AP(a)+p(a) = AP(a)+c2p(a) = 0. (52) 

19 There are several different definitions of the exponential 
integral. We follow the recommendation of A. Fletcher, J. C. P. 
Miller, L. Rosenhead, and L. J. Comrie, An Index of Mathematical 
Tables (Addison-Wesley Publishing Company, Inc., Reading, 
Massachusetts, 1962), 2nd ed., Vol. I, pp. 267, 268. 

When (52) is combined with (50) and (51), the correct 
boundary condition for a vortex with a hollow core is 

iDV2(a>a)-1u(a)+c2p(a) = 0. (53) 

Equation (19) gives the radial velocity in terms of p, 
and for ^ = 0 , Eq. (53) becomes 

<W (a)- (V/c)2
P0(a) = - (a>a/V)2

PQ(a). (54) 

For long wavelengths, the left member of (54) is a small 
quantity of order (ka)2. 

The second model considered is a core with uniform 
vorticity, in which the core rotates like a solid body. 
The tangential velocity of the vortex is given by 

V(r) = ic/2wr r>a 

= Kr/2<ira2 r<a, (55) 

and the boundary conditions require the continuity of 
the pressure and of the radial velocity at r=a. Equation 
(19) for the radial velocity contains the factor 

A0=ilcfi- (2V/r2)(d/dr) {rV)~], (56) 

which is discontinuous at r=a. The condition on the 
radial velocity can be reduced to the following equation: 

aP>'(a)-{V/cfP>{a) 
= c o W - O c / x a 2 ) 2 ] - 1 ^ ' ^ ) - ( F / c ) 2

P < ( a ) ] , (57) 

where p> and p< refer to the values for r greater or less 
than a. In the long-wavelength limit, the left member 
of (57) is of order {ka)2, which is equivalent to the 
boundary condition (54) for a hollow core. Further­
more, the quantity on the left side of both equations 
(54) and (57) is proportional to u(a), so that the radial 
velocity at the boundary vanishes like k2 in both 
models. This is to be compared with the scattering of 
sound by a rigid cylinder, where u(a) vanishes. For 
small k, the s-wave scattering by a vortex and by a 
rigid cylinder are essentially the same. 

Both (54) and (57) can be written in dimensionless 
form as 

xopo (ffo) — x0~
2po (ffo) = 0 (v2)., (58) 

where Xb=2irca/n. When this boundary condition is 
applied to (48), the ratio B/A is found to be of order p2. 
The phase shift is determined from the behavior of (48) 
for large x, which is 

po(x)->A+B(y-\n2x2), (59) 

where y is Euler's constant.19 The coefficient of the 
logarithmic term is of order p2, which shows that the 
s-wave phase shift is also of order v2. This result is not 
restricted to the simple cases considered above; any 
model for which u(a) = 0(k2) leads to an s-wave phase 
shift of order k2. 

V. HIGHER PARTIAL WAVES 

The scattering in the higher angular momentum 
states ( ^ 0 ) will now be considered. With the same 



A 1492 A L E X A N D E R L . F E T T E R 

dimensionless variables as in (43), Eqs. (18), (20), and 
(21) become 

P/'+X~W+ ("2 - t2x~2)pz- HPI+HPI- o, (60) 
si=x~*+Mx-1(vx2-t)-1, (61) 

tt=- 2lvx~2+ (^2+ 2)x~4+ 2lx~* {vx2-1)-1 (1+2x2) 

+M2xl2{vx2-t)~2. (62) 

Both x=0 and x= °o are irregular singular points of 
(60), while 

x=±(^A)1/2 

are regular singular points. I t is remarkable that the 
regular singularities can be removed by the substitution 

P/0*0 = 3^0) e xP (afs*) • (63) 

For large x, the ratio ptfyi approaches unity, so that p^ 
and yi have the same asymptotic phase. The resulting 
equation for yg is 

y/'+x-1y/+y£v2~\2x-2+U(xn = 0, (64) 
where 

U(x)= (l2+l)x-*-\x-*, (65) 

X2=^2+2^. (66) 

The only singular points of (64) are x=0 and x= °o, and 
the equation is of a form familiar in scattering theory. 

If the "potential" U(x) behaves like x~n for large x, 
it is easy to show that the phase shift due to U behaves 
for small v like v2X if 2\<n-2 and like vn~2 if 2\>n-2. 
Landau and Lifshitz14 derive the corresponding condi­
tions for three-dimensional scattering. With the specific 
form of U given in (65), the asymptotic exponent is 
n = 4:.It follows immediately from (66) that the part of 
the phase shift caused by U is of order v2 for small v. 
This holds even for l= — 1, where the phase shift 
behaves like 

v2 exp(— 2^1m>), 
because 

| exp (— v In?/) | < exp (e~l) 
for 

I t is therefore sufficient to examine the phase shift 
due to the explicit appearance of v in (66). In the 
absence of the vortex, the correct solution of (64) is 
Jl{vx), whose asymptotic phase is 

-MI'l+i)-
The "potential" U may be neglected in (64) since its 
contribution to the phase shift is of higher order. Hence 
the correct solution in the presence of the vortex is 

J\\\{vx), 

whose asymptotic phase is 

- § 7 r [ ( ^ + 2 ^ / 2 + | ] . 

The phase shift is the difference between the two 
asymptotic phases: 

«/= -kC^H-2^) 1 / 2 - 11\ ] « - W sgn/, (67) 
where 

s g n £ = / / | £ | . 

This is of order v, so that the other effects (of order v2) 
are in fact negligible. 

VI. THE SCATTERING CROSS SECTION 

The scattering amplitude is now easily computed 
from (67) and (27). In the long-wavelength limit, the 
phase shifts (67) are small. I t is sufficient to approximate 

e x p ( 2 ^ ) - l 
by 

— iriv sgn^, 
so that 

f(<p)=->irip(2wk)-1l2Z'eu* sgn^, (68) 

where the prime means: omit the term with t— 0. The 
summation in (68) can be evaluated as follows: 

"£'eiU sgn£=]£/>o(e^--entf*) 

= 2iIm£t>oeu*= 2i lm{\-e^)~l 

= i sin (p (1 — cos <p)~l. (69) 

The scattering amplitude is given by 

/(<?) = KTT/2£)1 / 2 s i n ^ ( l - c o s ^ ) - 1 , (70) 

with the corresponding differential cross section: 

<r(^>)= | / (^ ) | 2 =i7r ( /c /2xc) 2 ^s inV( l -cos^) - 2 . (71) 

The total cross section computed from (71) diverges, 
which reflects the long-range nature of the vortical 
velocity field, in a manner similar to the Rutherford 
cross section. In any attenuation experiment, however, 
there is a natural cutoff <p0, which is essentially the 
angle subtended by the detector. A wave scattered 
through an angle <p<<po is measured as part of the 
unscattered wave and thus fails to contribute to the 
total cross section. The experimental quantity of in­
terest is 

o"r(tf>o) = I <r(<p)d<p, (72) 
J <pQ 

and from (71) we find 

<xT(<Po) = 7r(K/2>jrc)2kl2 c o t ( ^ 0 ) + ^ o - 7 r ] . (73) 

Chase, Fineman, and Millett20 have studied the attenu­
ation of sound in rotating liquid He I I , where the 
circulation is h/m, in which m is the mass of the He 
atom. Rotation speeds of up to 20 rad/sec produced no 
measurable effect at a frequency of 106 cps, and they 
concluded that the attenuation due to the vortices was 
less than 10~3 cm -1. If the cutoff is taken as 10~2 rad, 

20 C. E. Chase, J. Fineman, and W. E. Millett, Physica 25, 631 
(1959). 
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the attenuation computed from (73) is 2.9X10 - 8 cm -1, 
which is well within the experimental limit. 

In many physical processes, the relevant quantity is 
not the total cross section, but rather the transport 
cross section, defined by 

<7*= a(<p)(l-cos<p)d<p. (74) 

A typical example is the transfer of momentum from a 
sound wave to a vortex, for which a* is finite in spite of 
the long range of the velocity field. From (71), it is 
straightforward to find that 

o-*=i Wc)2k = IT2 {ft/mc)2k, (75) 

where the last result is valid for liquid He I I (K=h/m). 
The transport cross section (75) is identical with Pitaev-
skii's6 quoted result, but the agreement is perhaps 
fortuitous; a factor of \ appears to be missing in each 
of his equations (26) and (29). The differential cross 
section (71) differs from his calculation, but the origin 
of the contradiction is not immediately apparent in his 
work. I t is more obvious in a treatment using partial 
waves. Pitaevskii works throughout with two-dimen­
sional partial differential equations and applies the Born 
approximation to the unseparated equation corre­
sponding to (60). In addition to the first term of (62), 
he was thus forced to include two terms of order (^x4)-1. 
These latter terms cancel in the exact equation (64), 
and their contribution to the scattering amplitude is 
spurious. Furthermore, Pitaevskii neglects from the 
start all terms quadratic in the velocity field of the 
vortex, as a result of which the s-wave scattering is 
entirely omitted. This approximation must be justified 
by a detailed examination of specific models, as in 
Sec. IV. 

VII. DISCUSSION 

The only way to obtain a measurable scattering cross 
section in liquid He I I is to increase the frequency of the 
sound wave. The extremely small magnitude of the 
cross sections, however, probably precludes the use of 
an externally generated sound wave to verify (71) or 
(75). A more feasible method is based on the excitations 
in liquid He II , which, below 0.5 °K, are almost entirely 
phonons of relatively high frequency. As an example, 
the temperature 0.4°K corresponds to a frequency of 
8.3 X109 cps, for which the transport cross section (75) 
is 0.095 A (Chase et al. worked at 106 cps). Pitaevskii6 

shows that the force exerted on a vortex by the gas of 
phonons is proportional to T5, so that the measurement 
of cr* would be most easily carried out in the tempera­
ture range from 0.2 to 0.5°K. At temperatures above 
0.6°K, the phonon component of the normal fluid is 
negligible. Hence, Hall and Vinen,4 working above 

1.2°K, observed essentially pure proton scattering by a 
vortex. Rayfield and Reif21 have recently studied the 
energy loss of a large vortex ring over the range 
0 . 2 8 ° K ^ T ^ 0 . 7 ° K ; they conclude that the measure­
ments are "not inconsistent" with Eq. (75), the theo­
retical value for the phonon transport cross section. 

I t is interesting to examine the physical basis for the 
scattering of sound by a vortex. The usual wave 
equation is no longer valid in a moving medium, and the 
basic equation of linear acoustics9 is 

c-2(d/dt+Y'V)2
P-V2p=0. (76) 

If a vortex is the source of the velocity field, V-V 
reduces to 

(V/rKd/d<p), 

which accounts for the appearance of the combination 

(<a-W/r) 

in (15)-(17) instead of co. The only scattering in the 
long-wavelength limit is due to the first term of (21), 
which is merely the middle term of 

(co-^F/r) 2 . 

In fact, if only this term is retained, a calculation of the 
phase shift in Born approximation yields the same 
result as (67). The quantum mechanical treatment of a 
moving medium is wholly analogous to the classical 
one. The energy E is replaced by 

CE-V-p), 

and if the velocity of the medium is small, the second 
term can be regarded as a perturbation.4 

The inner boundary conditions are not critical in the 
present calculation. They function primarily to reduce 
the s-wave phase shift from a dominant role to a negli­
gible one but play no part at all in the higher partial 
waves. Any model in which do is of order k2 gives the 
same differential cross section to leading order. Such 
models differ only in higher (probably unmeasurable) 
corrections. I t is, of course, not surprising that a long-
wavelength sound wave can detect only the long-range 
velocity field of the vortex. I t appears that no existing 
experimental techniques can probe the vortex core. At 
present, however, there is no theory of core structure 
to be verified. 
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